

SOT-23-3L

Features

- 100V, 1.3A , $RDS(ON)=500m\Omega$ @ VGS=10V
- Improved dv/dt capability
- Fast switching
- Green Device Available

Applications

- Networking
- Load Switch
- LED applications

BVDSS	RDSON	ID
100V	$500 \text{m}\Omega$	1.3A

Absolute Maximum Ratings Tc=25°C unless otherwise noted

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
Vgs	Gate- Source Voltage	±20	V
	Drain Current − Continuous (T _A =25°C)	1.3	А
lo	Drain Current – Continuous (T _A =70°C)	1.12	А
Ірм	Drain Current – Pulsed¹	5.6	А
5	Power Dissipation (T _A =25°C)	1.56	W
Po	Power Dissipation – Derate above 25°C	0.012	W/°C
Тѕтс	Storage Temperature Range	-50 to 150	℃
ΓJ	Operating Junction Temperature Range	-50 to 150	℃

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction to ambient		80	°C/W

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BVDSS	Drain- Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
△BVDSS/△TJ	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D =1mA		0.09		V/°C
Inss Drain-Source Leakage Current		V _{DS} =100V , V _{GS} =0V , T _J =25°C			1	uд
loss	J	V _{DS} =80V , V _{GS} =0V , T _J =125°C			10	uД
Igss	Gate- Source Leakage Current	V _{GS} = ±20V , V _{DS} =0V			± 100	nΑ

On Characteristics

R _{DS(ON)} Static Drain-Source On-Resistance	Otatia Basia Osama On Basiatana	V _{GS} =10V , I _D =1A		500	600	mΩ
	Static Drain-Source On-Resistance	V _{GS} =4 .5V , I _D =0.5A		550	700	mΩ
V _{GS(th)}	Gate Threshold Voltage	\/=\/ - =250\\A	1.2	1.6	2.5	V
$\triangle V$ GS(th)	V _{GS(th)} Temperature Coefficient	VGS=VDS, ID =250uA		-5		mV/°C
gfs	Forward Transconductance	V _{DS} =10V , I _D =1A		2.3		S

Dynamic and switching Characteristics

Qg	Total Gate Charge ² · ³		 9	
Qgs	Gate-Source Charge ² , ³	V _{DS} =50V , V _{GS} =10V , I _D =1A	 2.3	 nC
Qgd	Gate-Drain Charge ^{2, 3}		 1.1	
T _{d(on)}	Turn-On Delay Time ² · ³		 5.2	
Tr	Rise Time ² · ³	V_{DD} =50 V , V_{GS} =10 V , R_{G} =3.3 Ω	 6.8	
T _{d(off)}	Turn-Off Delay Time ² , ³	I _D =1A	 14.5	 ns
Tf	Fall Time ^{2 , 3}		 2.1	
Ciss	Input Capacitance		 492	
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , F=1MHz	 27	 pF
Crss	Reverse Transfer Capacitance		 15	

Drain-Source Diode Characteristics and Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current	V - V - 0V - 5ama Cumant			13	Α
Ism	Pulsed Source Current	V _G =V _D =0V , Force Current			2.6	Α
VsD	Diode Forward Voltage	V _G s=0V , I _S =1A , T _J =25°C			1.2	V

Note:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2 . The data tested by pulsed , pulse width $\leqq~300\,\text{us}$, duty cycle $\leqq~2\%$.
- 3. Essentially independent of operating temperature.

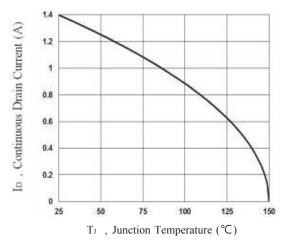


Fig. 1 Continuous Drain Current vs. T.

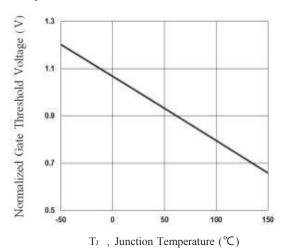


Fig. 3 Normalized V_{th} vs. T_J

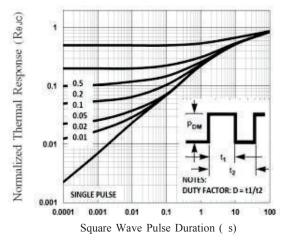


Fig. 5 Normalized Transient Impedance

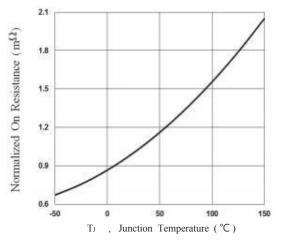


Fig. 2 Normalized RDSON vs. To

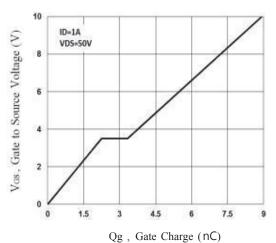


Fig. 4 Gate Charge Waveform

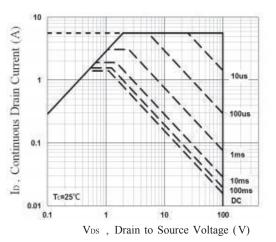
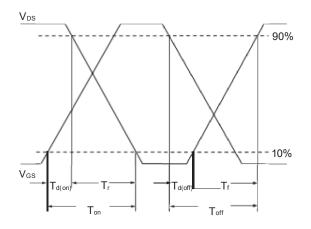



Fig. 6 Maximum Safe Operation Area

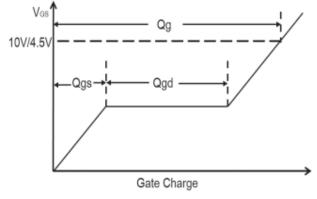
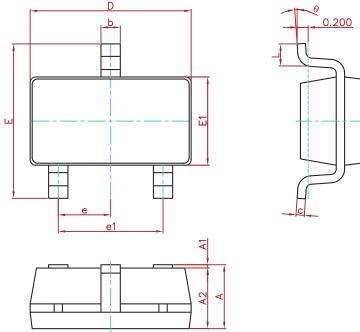
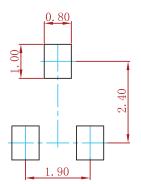



Fig. 7 Switching Time Waveform

Fig. 8 Gate Charge Waveform



PACKAGE MECHANICAL DATA

Symbol	Dimensions In	n Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E1	1.500	1.700	0.059	0.067
E	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037((BSC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

Suggested Pad Layout

- 1.Controlling dimension:in millimeters.
- 2.General tolerance:± 0.05mm.
 3.The pad layout is for reference purposes only.

REEL SPECIFICATION

P/N	PKG	QTY
AO3442	SOT-23-3L	3000

Attention

- Any and all MEI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MEI Semiconductor representative nearest you before using any MEI Semiconductor products described or contained herein in such applications.
- MEI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MEI Semiconductor products described or contained herein.
- Specifications of any and all MEI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- MEI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all MEI Semiconductor products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MEI Semiconductor.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. MEI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the MEI Semiconductor product that you intend to use.