

3.2x1.0mm, Red & Yellow Green LED Right Angle, SMD Chip LED Bi-Color Chip LED Indicator

Technical Data Sheet

Features:

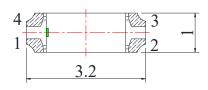
- Package in 8mm tape on 7" diameter reel.
- Compatible with automatic placement equipment.
- Compatible with infrared and vapor phase reflow solder process.
- Bi-color type.
- Color: Red & Yellow Green.
- The product itself will remain within RoHS compliant Version.

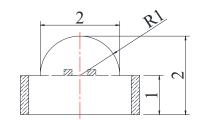
Descriptions:

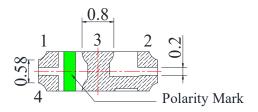
- This SMD LED is much smaller than lead frame type components, thus enable smaller board size,
 higher packing density, reduced storage space and finally smaller equipment to be obtained.
- Besides, lightweight makes them ideal for miniature applications, etc.

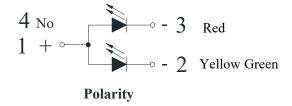
Applications:

- Backlighting in dashboard and switch.
- Telecommunication: Indicator and backlighting in telephone and fax.
- Flat backlight for LCD, switch and symbol.
- General use.

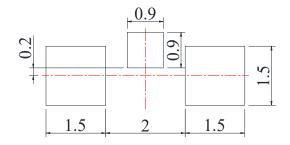



3.2x1.0mm, Red & Yellow Green LED Right Angle, SMD Chip LED Bi-Color Chip LED Indicator


Technical Data Sheet


Part No.	Emitting Color		Lens Color
S1204200P-DMWC-V120G50	V	Red	Water Class
	G	Yellow Green	─ Water Clear

Package Dimension:



Recommended Soldering Pad Dimensions

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is ± 0.25 mm (.010") unless otherwise noted.

3.2x1.0mm, Red & Yellow Green LED Right Angle, SMD Chip LED Bi-Color Chip LED Indicator

Technical Data Sheet

Absolute Maximum Ratings at Ta=25℃

Parameters	Symbol	Emitting Color	Max.	Unit	
Device Discipation	DD	Red	60		
Power Dissipation	PD	Yellow Green	60	mW	
Dook Converd Ourse #4(3)	IED	Red	100	mA	
Peak Forward Currentt ^(a)	IFP	Yellow Green	100		
Continuous Forward Compant(b)	ır	Red	25	Δ	
Continuous Forward Current ^(b)	IF	Yellow Green	25	mA	
Reverse Voltage	VR	5 V		V	
Electricate Discharge (UDM)	FOD	Red	2000	V	
Electrostatic Discharge (HBM)	ESD	Yellow Green	2000	V	
Operating Temperature Range	Topr	-40°C to +80°C			
Storage Temperature Range	Tstg	-40℃ to +85℃			
Soldering Temperature	Tsld	260°C for 5 Seconds			

Notes

- a. Derate linearly as shown in derating curve.
- b. Duty Factor = 10%, Frequency = 1 kHz

3.2x1.0mm, Red & Yellow Green LED Right Angle, SMD Chip LED Bi-Color Chip LED Indicator

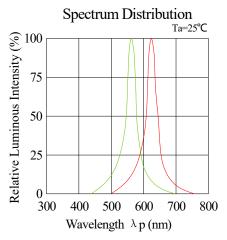
Technical Data Sheet

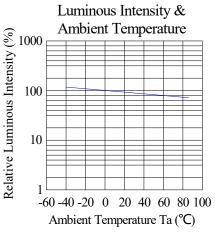
Electrical Optical Characteristics at Ta=25℃

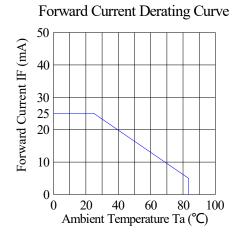
Parameters	Symbol	Emitting Color	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity ^(a)	IV	Red	70	120		mcd	IF=20mA
		Yellow Green	30	50			
Viewing Angle ^(b)	201/2	Red		120		Deg	IF=20mA
		Yellow Green		120			
Peak Emission Wavelength	λр	Red		632		nm	IF=20mA
		Yellow Green		575			
Dominant Wavelength ^(C)	λd	Red		624		nm	IF=20mA
		Yellow Green		573			
Spectral Line Half-Width	Δλ	Red		20		nm	IF=20mA
		Yellow Green		20			
Forward Voltage	VF	Red	1.60	2.00	2.40	V	IF=20mA
		Yellow Green	1.60	2.00	2.40		
Reverse Current	IR	Red			10	μΑ	\/D-5\/
		Yellow Green					VR=5V

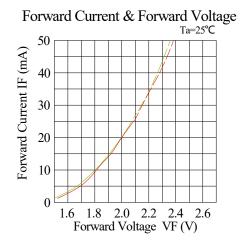
Notes:

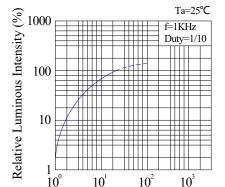
- a. ALuminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
- b. 201/2 is the o -axis angle where the luminous intensity is 1/2 the peak intensity
- c. The dominant wavelength (λ d) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

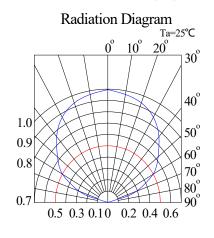





3.2x1.0mm, Red & Yellow Green LED Right Angle, SMD Chip LED Bi-Color Chip LED Indicator

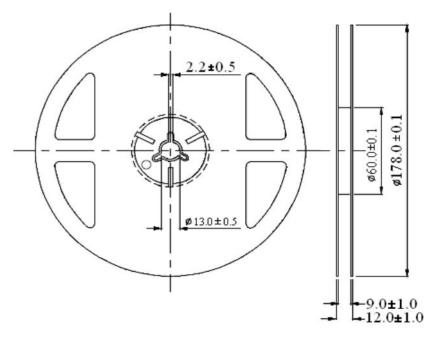

Technical Data Sheet


Typical Electrical / Optical Characteristics Curves (25°C Ambient Temperature Unless Otherwise Noted)



Luminous Intensity & Forward Current

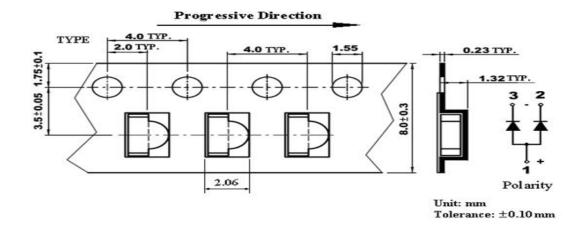
Forward Current IF (mA)



3.2x1.0mm, Red & Yellow Green LED Right Angle, SMD Chip LED Bi-Color Chip LED Indicator

Technical Data Sheet

Reel Dimensions:

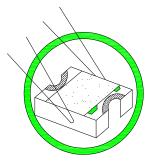


Unit: mm

Tolerance: ± 0.25 mm

Carrier Tape Dimensions:

Loaded quantity 3000 pcs per reel.


3.2x1.0mm, Red & Yellow Green LED Right Angle, SMD Chip LED Bi-Color Chip LED Indicator

Technical Data Sheet

CAUTIONS

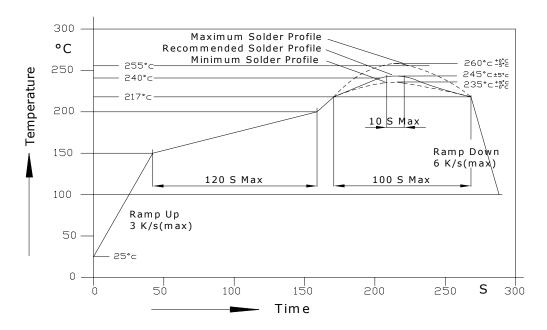
1. Handling Precautions:

- 1.1. Handle the component along the side surfaces by using forceps or appropriate tools.
- 1.2. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry.
- 1.3. Do not stack together assembled PCBs containing exposed LEDs. Impact may scratch the silicone lens or damage the internal circuitry.

Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force. As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

2. Storage

- 2.1. Do not open moisture proof bag before the products are ready to use.
- 2.2. Before opening the package, the LEDs should be kept at 30°C or less and 60%RH or less.
- 2.3. The LEDs should be used within a year.
- 2.4. After opening the package, the LEDs should be kept at 30°C or less and 60%RH or less.
- 2.5. The LEDs should be used within 168 hours after opening the package.
- 2.6. If the moisture adsorbent material has fabled away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment: 65±5°C for 24 hours.



3.2x1.0mm, Red & Yellow Green LED Right Angle, SMD Chip LED Bi-Color Chip LED Indicator

Technical Data Sheet

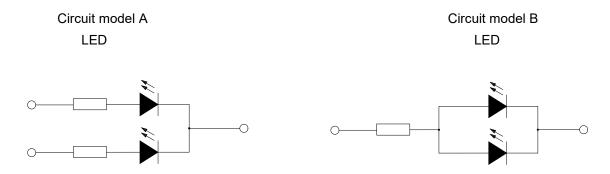
3. Soldering Condition

3.1. Pb-free solder temperature profile

- 3.2. Reflow soldering should not be done more than two times.
- 3.3. When soldering, do not put stress on the LEDs during heating.
- 3.4. After soldering, do not warp the circuit board.
- 3.5. Recommended soldering conditions:

Reflow soldering		Soldering iron			
Pre-heat	150~200°C	Temperature	300°C Max.		
Pre-heat time	120 sec. Max.	Soldering time	3 sec. Max.		
Peak temperature	260°C Max.		(one time only)		
Soldering time	10 sec. Max.(Max. two times)				

3.6. Because different board designs use different number and types of devices, solder pastes, reflow ovens, and circuit boards, no single temperature profile works for all possible combinations.


3.2x1.0mm, Red & Yellow Green LED Right Angle, SMD Chip LED Bi-Color Chip LED Indicator

Technical Data Sheet

However, you can successfully mount your packages to the PCB by following the proper guidelines and PCB-specific characterization.

4. Drive Method

4.1. An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below.

- a. Recommended circuit.
- b. The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs.

Terms and conditions for the usage of this document

- 1. The information included in this document reflects representative usage scenarios and is intended for technical reference only.
- 2. The part number, type, and specifications mentioned in this document are subject to future change and improvement without notice. Before production usage customer should refer to the latest datasheet for the updated specifications.
- 3. When using the products referenced in this document, please make sure the product is being operated within the environmental and electrical limits specified in the datasheet. If customer usage exceeds the specified limits, Ever-Led will not be responsible for any subsequent issues.
- 4. The information in this document applies to typical usage in consumer electronics applications. If customer's application has special reliability requirements or have life-threatening liabilities, such as automotive or medical usage, please consult with Ever-Led representative for further assistance.